136 research outputs found

    Medical diagnosis using machine learning: a statistical review

    Get PDF
    Decision making in case of medical diagnosis is a complicated process. A large number of overlapping structures and cases, and distractions, tiredness, and limitations with the human visual system can lead to inappropriate diagnosis. Machine learning (ML) methods have been employed to assist clinicians in overcoming these limitations and in making informed and correct decisions in disease diagnosis. Many academic papers involving the use of machine learning for disease diagnosis have been increasingly getting published. Hence, to determine the use of ML to improve the diagnosis in varied medical disciplines, a systematic review is conducted in this study. To carry out the review, six different databases are selected. Inclusion and exclusion criteria are employed to limit the research. Further, the eligible articles are classified depending on publication year, authors, type of articles, research objective, inputs and outputs, problem and research gaps, and findings and results. Then the selected articles are analyzed to show the impact of ML methods in improving the disease diagnosis. The findings of this study show the most used ML methods and the most common diseases that are focused on by researchers. It also shows the increase in use of machine learning for disease diagnosis over the years. These results will help in focusing on those areas which are neglected and also to determine various ways in which ML methods could be employed to achieve desirable results

    DITrust Chain: Towards Blockchain-Based Trust Models for Sustainable Healthcare IoT Systems

    Get PDF
    Β© 2013 IEEE. Today, internet and device ubiquity are paramount in individual, formal and societal considerations. Next generation communication technologies, such as Blockchains (BC), Internet of Things (IoT), cloud computing, etc. offer limitless capabilities for different applications and scenarios including industries, cities, healthcare systems, etc. Sustainable integration of healthcare nodes (i.e. devices, users, providers, etc.) resulting in healthcare IoT (or simply IoHT) provides a platform for efficient service delivery for the benefit of care givers (doctors, nurses, etc.) and patients. Whereas confidentiality, accessibility and reliability of medical data are accorded high premium in IoHT, semantic gaps and lack of appropriate assets or properties remain impediments to reliable information exchange in federated trust management frameworks. Consequently, We propose a Blockchain Decentralised Interoperable Trust framework (DIT) for IoT zones where a smart contract guarantees authentication of budgets and Indirect Trust Inference System (ITIS) reduces semantic gaps and enhances trustworthy factor (TF) estimation via the network nodes and edges. Our DIT IoHT makes use of a private Blockchain ripple chain to establish trustworthy communication by validating nodes based on their inter-operable structure so that controlled communication required to solve fusion and integration issues are facilitated via different zones of the IoHT infrastructure. Further, text{C}mathrm {sharp } implementation using Ethereum and ripple Blockchain are introduced as frameworks to associate and aggregate requests over trusted zones

    A New Chaotic Map with Dynamic Analysis and Encryption Application in Internet of Health Things

    Get PDF
    Β© 2013 IEEE. In this paper, we report an effective cryptosystem aimed at securing the transmission of medical images in an Internet of Healthcare Things (IoHT) environment. This contribution investigates the dynamics of a 2-D trigonometric map designed using some well-known maps: Logistic-sine-cosine maps. Stability analysis reveals that the map has an infinite number of solutions. Lyapunov exponent, bifurcation diagram, and phase portrait are used to demonstrate the complex dynamic of the map. The sequences of the map are utilized to construct a robust cryptosystem. First, three sets of key streams are generated from the newly designed trigonometric map and are used jointly with the image components (R, G, B) for hamming distance calculation. The output distance-vector, corresponding to each component, is then Bit-XORed with each of the key streams. The output is saved for further processing. The decomposed components are again Bit-XORed with key streams to produce an output, which is then fed into the conditional shift algorithm. The Mandelbrot Set is used as the input to the conditional shift algorithm so that the algorithm efficiently applies confusion operation (complete shuffling of pixels). The resultant shuffled vectors are then Bit-XORed (Diffusion) with the saved outputs from the early stage, and eventually, the image vectors are combined to produce the encrypted image. Performance analyses of the proposed cryptosystem indicate high security and can be effectively incorporated in an IoHT framework for secure medical image transmission

    Head Position in Stroke Trial (HeadPoST)- sitting-up vs lying-flat positioning of patients with acute stroke: study protocol for a cluster randomised controlled trial

    Get PDF
    Background Positioning a patient lying-flat in the acute phase of ischaemic stroke may improve recovery and reduce disability, but such a possibility has not been formally tested in a randomised trial. We therefore initiated the Head Position in Stroke Trial (HeadPoST) to determine the effects of lying-flat (0Β°) compared with sitting-up (β‰₯30Β°) head positioning in the first 24 hours of hospital admission for patients with acute stroke. Methods/Design We plan to conduct an international, cluster randomised, crossover, open, blinded outcome-assessed clinical trial involving 140 study hospitals (clusters) with established acute stroke care programs. Each hospital will be randomly assigned to sequential policies of lying-flat (0Β°) or sitting-up (β‰₯30Β°) head position as a β€˜business as usual’ stroke care policy during the first 24 hours of admittance. Each hospital is required to recruit 60 consecutive patients with acute ischaemic stroke (AIS), and all patients with acute intracerebral haemorrhage (ICH) (an estimated average of 10), in the first randomised head position policy before crossing over to the second head position policy with a similar recruitment target. After collection of in-hospital clinical and management data and 7-day outcomes, central trained blinded assessors will conduct a telephone disability assessment with the modified Rankin Scale at 90 days. The primary outcome for analysis is a shift (defined as improvement) in death or disability on this scale. For a cluster size of 60 patients with AIS per intervention and with various assumptions including an intracluster correlation coefficient of 0.03, a sample size of 16,800 patients at 140 centres will provide 90 % power (Ξ± 0.05) to detect at least a 16 % relative improvement (shift) in an ordinal logistic regression analysis of the primary outcome. The treatment effect will also be assessed in all patients with ICH who are recruited during each treatment study period. Discussion HeadPoST is a large international clinical trial in which we will rigorously evaluate the effects of different head positioning in patients with acute stroke. Trial registration ClinicalTrials.gov identifier: NCT02162017 (date of registration: 27 April 2014); ANZCTR identifier: ACTRN12614000483651 (date of registration: 9 May 2014). Protocol version and date: version 2.2, 19 June 2014

    Controlled Growth of WO3Nanostructures with Three Different Morphologies and Their Structural, Optical, and Photodecomposition Studies

    Get PDF
    Tungsten trioxide (WO3) nanostructures were synthesized by hydrothermal method using sodium tungstate (Na2WO4Β·2H2O) alone as starting material, and sodium tungstate in presence of ferrous ammonium sulfate [(NH4)2Fe(SO4)2Β·6H2O] or cobalt chloride (CoCl2Β·6H2O) as structure-directing agents. Orthorhombic WO3having a rectangular slab-like morphology was obtained when Na2WO4Β·2H2O was used alone. When ferrous ammonium sulfate and cobalt chloride were added to sodium tungstate, hexagonal WO3nanowire clusters and hexagonal WO3nanorods were obtained, respectively. The crystal structure and orientation of the synthesized products were studied by X-ray diffraction (XRD), micro-Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM), and their chemical composition was analyzed by X-ray photoelectron spectroscopy (XPS). The optical properties of the synthesized products were verified by UV–Vis and photoluminescence studies. A photodegradation study on Procion Red MX 5B was also carried out, showing that the hexagonal WO3nanowire clusters had the highest photodegradation efficiency

    LRP-1 Promotes Cancer Cell Invasion by Supporting ERK and Inhibiting JNK Signaling Pathways

    Get PDF
    Background: The low-density lipoprotein receptor-related protein-1 (LRP-1) is an endocytic receptor mediating the clearance of various extracellular molecules involved in the dissemination of cancer cells. LRP-1 thus appeared as an attractive receptor for targeting the invasive behavior of malignant cells. However, recent results suggest that LRP-1 may facilitate the development and growth of cancer metastases in vivo, but the precise contribution of the receptor during cancer progression remains to be elucidated. The lack of mechanistic insights into the intracellular signaling networks downstream of LRP-1 has prevented the understanding of its contribution towards cancer. Methodology/Principal Findings: Through a short-hairpin RNA-mediated silencing approach, we identified LRP-1 as a main regulator of ERK and JNK signaling in a tumor cell context. Co-immunoprecipitation experiments revealed that LRP-1 constitutes an intracellular docking site for MAPK containing complexes. By using pharmacological agents, constitutively active and dominant-negative kinases, we demonstrated that LRP-1 maintains malignant cells in an adhesive state that is favorable for invasion by activating ERK and inhibiting JNK. We further demonstrated that the LRP-1-dependent regulation of MAPK signaling organizes the cytoskeletal architecture and mediates adhesive complex turnover in cancer cells. Moreover, we found that LRP-1 is tethered to the actin network and to focal adhesion sites and controls ERK and JNK targeting to talin-rich structures. Conclusions: We identified ERK and JNK as the main molecular relays by which LRP-1 regulates focal adhesion disassembly of malignant cells to support invasion

    Active removal of waste dye pollutants using Ta[sub]3N[sub]5/W[sub]18O[sub]49 nanocomposite fibres

    Get PDF
    A scalable solvothermal technique is reported for the synthesis of a photocatalytic composite material consisting of orthorhombic Ta3N5 nanoparticles and WOx≀3 nanowires. Through X-ray diffraction and X-ray photoelectron spectroscopy, the as-grown tungsten(VI) sub-oxide was identified as monoclinic W18O49. The composite material catalysed the degradation of Rhodamine B at over double the rate of the Ta3N5 nanoparticles alone under illumination by white light, and continued to exhibit superior catalytic properties following recycling of the catalysts. Moreover, strong molecular adsorption of the dye to the W18O49 component of the composite resulted in near-complete decolourisation of the solution prior to light exposure. The radical species involved within the photocatalytic mechanisms were also explored through use of scavenger reagents. Our research demonstrates the exciting potential of this novel photocatalyst for the degradation of organic contaminants, and to the authors’ knowledge the material has not been investigated previously. In addition, the simplicity of the synthesis process indicates that the material is a viable candidate for the scale-up and removal of dye pollutants on a wider scale

    Repeated successful surgical rescues of early and delayed multiple ruptures of ventricular septum, right ventricle and aneurysmal left ventricle following massive biventricular infarction

    Get PDF
    A 58 year old man underwent 6 surgical interventions for various complications of massive biventricular myocardial infarction over a period of 2 years following acute occlusion of a possibly "hyperdominant" left anterior descending coronary artery. These included concomitant repair of apicoanterior post-infarction VSD and right ventricular free wall rupture, repeat repair of recurrent VSD following inferoposterior extension of VSD in the infarcted septum 5 weeks later, repair of delayed right ventricular free wall rupture 4 weeks subsequently, repair of a bleeding left ventricular aneurysm eroding through left chest wall 16 months thereafter, repair of right upper lobe lung tear causing massive anterior mediastinal haemorrhage, mimicking yet another cardiac rupture, 2 months later, followed, at the same admission, 2 weeks later, by sternal reconstruction for dehisced and infected sternum using pedicled myocutaneous latissimus dorsi flap. 5 years after the latissimus myoplasty, the patient remains in NYHA class 1 and is leading a normal life

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer
    • …
    corecore